Exercise 37

(a) If $f(x)=\left(x^{3}-x\right) e^{x}$, find $f^{\prime}(x)$.
(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f and f^{\prime}.

Solution

Evaluate the derivative using the product rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\left(x^{3}-x\right) e^{x}\right] \\
& =\left[\frac{d}{d x}\left(x^{3}-x\right)\right]\left(e^{x}\right)+\left(x^{3}-x\right)\left[\frac{d}{d x}\left(e^{x}\right)\right] \\
& =\left(3 x^{2}-1\right)\left(e^{x}\right)+\left(x^{3}-x\right)\left(e^{x}\right) \\
& =\left(x^{3}+3 x^{2}-x-1\right) e^{x}
\end{aligned}
$$

Below is a graph of the function and its derivative versus x.

$f^{\prime}(x)$ is positive wherever $f(x)$ increases, $f^{\prime}(x)$ is zero wherever the slope of $f(x)$ is zero, and $f^{\prime}(x)$ is negative wherever $f(x)$ is decreasing. The answer to part (a) is reasonable then.

